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Abstract Heuristic approaches to the statistics of tagged particle motion in a one-
dimensional hard point particle fluid are discussed. An exact expression is obtained for
the finite N case with arbitrary single-particle interactionless dynamics. This is extended
to the mean over tagged particles as N → ∞, and a simple form presented in terms of
elementary physical quantities. Extension to single-file flow under quasi-one-dimensional
confinement is initiated.
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1 Introduction

Sophisticated experimental [1], theoretical [2], and computational [3] techniques have com-
bined with industrial importance [4] and biological necessity [5] to motivate the recent surge
in the study of highly confined fluids. It is of course difficult to create a vehicle capable of
encompassing the diverse phenomenology put in evidence as the parameters controlling
such systems are varied, and we will not attempt to do so. We will rather focus—with a
good deal of bias- on perhaps the extreme of quasi-one-dimensional confinement, in which
the molecules of the fluid in question do not have the physical space to pass each other,
creating so-called single file flow. The fact that a particle, to move substantially, must carry
a cloud of particles with it, is an enormous impediment to motion, producing anomalously
slow identified particle dynamics. We will here narrow our attention to circumstances under
which classical physics suffices as theoretical underpinning; other specializations will arise
in due course.

Based loosely on talks given at Ben-Gurion University, Jan 2007, Rutgers University, Dec 2008, and
Beijing Institute of Theoretical Physics, Jan 2009.
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The major characteristics of the system we study will be

1. Blocking of motion by neighboring particles.
2. Small (molecular scale) volume/surface ratio of the confining substrate.
3. Crucial—but non-trivial—background information will be assumed, that of the dynamics

of an isolated particle in the same confining environment. This itself is a newly revivified
[6] very active field, building upon the dynamics of a free totally unimpeded particle,
which can be imagined to run the spectrum from inertial, based upon the Liouville equa-
tion

∂f/∂t + v · ∇f = 0 (1)

to the overdamped extreme of diffusion

∂ρ/∂t − D∇2ρ = 0 (2)

and we will when feasible make no explicit assumption as to this dynamics.

In this study, we will aim at the dynamics of a specified particle, one of the assumed
identical particles comprising the fluid; this “tagged particle” dynamics is to be regarded as
the signature of fluid transport properties, a relationship that is somewhat indirect [7]. We
will throughout take advantage of the separation of time scales between free particle motion
and that of the surrounding fluid. In summary, we will start with a review of the case of
field-free hard point particles on the full 1-D line, eliciting much of the phenomenology of
interest. We then proceed to an exact solution of the same system in an arbitrary external field
and with arbitrary isolated particle dynamics, introducing a number of physically relevant
concepts. Specialization to equilibrium and steady state systems is immediate. Extension to
hard rods on the line is trivial in the field-free case, and this gives us sufficient parameter
control to construct a leading order map to a next neighbor interacting fluid in a cylindrical
container with wall interactions.

2 Point Particles on a Line: Heuristics

If we cannot readily analyze the dynamics of a tagged particle in a system of identical hard
point particles on an unbounded line, then we cannot do anything! First, let us settle on the
meaning of “hard point particle”. For the usual Newtonian inertial dynamics, we are refer-
ring to the interaction responsible for elastic collisions, in which case energy and momentum
conservation tell us at once that incoming velocities v1 and v2 produce outgoing velocities
v′

1 = v2, v′
2 = v1. A pictorial interpretation is that the pair of velocities is unchanged—as

with no interaction—but the “tag” #1 is transferred to particle #2 by their collision.
Next, let us decide on just how we want to describe the tagged particle dynamics. Since

we will be dealing with a stochastic context, i.e. averaging over an ensemble of trajectory
realizations, we will regard this as specified by

p(x, t;y,0) (3)

the probability density of the particle being at x at time t , as well as being at y at time 0.
Consider an isolated particle. Probability then enters in two different ways: (a) via the initial
velocity distribution of the particle, but thereafter deterministically, including the possibility
of a damping mechanism; here the initial velocity of the trajectory is “frozen” in. (b) via
random forces applied to the trajectory, which is “annealed“ in the sense that a new random
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Fig. 1 Basic collision

Fig. 2 Tagged particle trajectory
(bold) in model fluid of
non-interacting particles

force is applied at each instant of time. In each case, there results a “phase space” density
p0(x, v, t;y,u,0), and the corresponding marginal density

p0(x, t;y,0) =
∫

p0(x, v, t;y,u,0) dv du (4)

Inertial dynamics is one extreme, in which random forces and damping are absent. Diffusion
is an opposite extreme, in which, on suitable scaling, the inertial mẍ forces vanish and only
damping and random forces remain.

In the whole dynamical clan just described, only the infinite contact forces matter during
the infinitesimal time of a collision, and so the prescription of Fig. 1 remains valid. Proceed-
ing to a tagged particle in a fluid, we can regard all particles as free and non-interacting,
but then the tag is to be transferred each time its carrier meets another particle, resulting in
the bold piecewise trajectory of Fig. 2 (implicit in the work of Harris [8], Jepsen [9], and
Levitt [2]). A quick heuristic analysis might then go like this:

The tagged particle, hemmed in by its neighbors, will have net motion on a much longer
time scale than that of the particles of the surrounding fluid, which can be regarded as non-
interacting. So on the latter time scale, we can “pessimistically” imagine the tagged particle
as stuck near its initial location, say 0, but able to pick up fluctuations (their nature is where
the physics lies) from its collisions. We will feel free to replace variables by their averages—
a mean field reduction—when convenient. Thus, if the mean particle density is n = 1

l
, where

l is the specific 1-D volume, a tag will move ±l from its local mean position when a collision
(just a crossing) with a neighbor takes place. Regarding successive collisions as independent
(but see Ref. [10]), the mean square displacement at time t would then be

〈�x(t)2〉 = l2Q(t) (5)

where Q(t) is the number of collisions up to time t .
Now on the scale on which we take the default location of the tag as the origin, a collider

initially at distance y from the origin (location ±y) will arrive at the origin at a time ty
estimated as the function of y inverse to

yt =
∫

|y|p0(0, t |y,0) dy = 〈|y(t)|〉0 where p0(x, t |y,0) ≡ p0(x, t;y,0)

p0(y)
(6)
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but yt , in units of l, is precisely the number of collisions that have occurred until t , yt =
lQ(t) (half from each of ±y, the other half going away from the origin). We conclude [11]
that

〈�x(t)2〉 = l〈|x(t)|〉0 (7)

In inertial motion, 〈|�x(t)|〉0 ∝ t , so that the tagged particle moves diffusively; in diffu-
sive motion, 〈|�x(t)|〉0 ∝ t

1
2 and then 〈�x(t)2〉 ∝ t

1
2 exhibits subdiffusion, or anomalous

diffusion.
An “optimistic” viewpoint is interesting as well [12]. Here, the default is that of the

tagged particle moving with complete freedom. But of course, it can only proceed as rapidly
as the particles in the direction of its motion retreat, while those on the other side move
into the vold created. There is then a cluster surrounding the tagged particle, which can be
approximately identified with the center of mass of the correlation cluster—similar to diffu-
sion in polymer melts [13]. What will be the dynamics of this center of mass? Suppose that
the cluster contains M(t) particles, of course an increasing function of time, now asymmet-
rically enclosing the origin, and that M−(t) particles are to the left of o, M+(t) to the right,
with M+(t) + M−(t) = M(t). The center of mass is clearly given—again assuming fixed
interparticle separation l, by

xcm(t) = l

2

M(t)∑
1

sgnxi(t) (8)

and so, using (sgnx)2 = 1, the independence of the xi(t), and the mean field assertion that
〈xi(t)〉 = 0, we conclude that

〈xcm(t)2〉 = l2

4
M(t) (9)

Equation (9) is independent of explicit dynamics, which then enters when we try to cal-
culate M(t). For this purpose, it suffices to look at 〈xcm(t)2〉 from another viewpoint. Rather
than use the approximate representation (8), we have by definition

xcm(t) = �xcm(t) = 1

M(t)

M(t)∑
1

�xi(t) (10)

where the �xi(t) follow isolated particle dynamics. Then from 〈�xi(t)〉0 = 0 and indepen-
dence (and xcm(0) = 0), we see that

〈�xcm(t)2〉 = 1

M(t)2
(M(t)〈�x(t)2〉0) (11)

Eliminating M(t) between (9) and (10), then

〈�x(t)2〉 = l

2
〈�x(t)2〉 1

2
0 (12)

not quite the same as (7), but yielding the same power of time dependence.

3 Hard Point Particles on a Line: Exact Self-dynamics

It is not hard to extend the above to include space and time varying external fields—which
have implicitly been ignored—but rather than do so in the context of a hand-waving treat-
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ment, we now turn to an exact solution of this rather elementary many-body problem. Sup-
pose then that we have N = 2M + 1 hard point particles in one-dimensional space, con-
fined as desired by an external field, and that we know the isolated particle stochastic dy-
namics p0(x, t;y,0). For definiteness, we will imagine that the central particle, denoted
by xc , is tagged (other ordinal locations are just a bit more complicated). The particle xc

must then be picked out from the unordered particle set whose free dynamics is equiva-
lent to our set of contact-reflecting particles. There are many ways of doing so, but for
our purposes, an indirect approach is more convenient. To set the stage, we first ask for
the tagged particle distribution at time t , not conditioned on t = 0, and choose to work
with

s0(x, t) ≡ 〈sgn(x − xi(t)〉0 (13)

which is a sensitive indicator of deviations from uniformity. Of course, we then have

p0(x, t) = 1

2

∂

∂x
s0(x, t) (14)

Now to find the density pc(ξ) of the central particle xc at location ξ (time implicit), we
note that xi will be the central particle if

∑
j

sgn(xi − xj ) = 0 (15)

it follows that any function f (xc)can be represented as

f (xc) =
∑

i

f (xi)δkr

(∑
j

sgn(x1 − xj )

)
(16)

where δkr denotes the Kronecker δ-function. Hence

f (xc) =
∑

i

f (xi)

∫ π

−π

exp

(
iφ

∑
j

sgn(x1 − xj )

)
dφ

2π
(17)

In particular, the per configuration probability density of xc , p̂c(ξ) = δ(ξ − xc), is given by

p̂c(ξ) =
∑

1

δ(ξ − xi)

∫ π

−π

exp

(
iφ

∑
j

sgn(ξ − xi)

)
dφ

2π
(18)

This is most simply evaluated [14] by observing that as ξ goes from x−
j to x+

j , eiφ sgn(ξ−xj )

goes from e−iφ to eiφ , a jump of 2i sinφ. Hence

∂

∂ξ
eiφ

∑
i sgn(ξ−xi ) = 2i sinφ

∑
j

δ(ξ − xj )e
iφ

∑
i sgn(ξ−xi ) (19)
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We can therefore (exercising caution for φ ∼ 0) rewrite (18) as

p̂c(ξ) =
∫

1

2 sinφ

∂

∂ξ
eiφ

∑
j sgn(ξ−xj ) dφ

2π
(20)

Taking the expectation of the independent {xi}, with common distribution p0(x), and
recalling that 〈sgn(ξ − x)〉0 = s0(ξ), we then have

pc(ξ) = ∂

∂ξ
qc(s0),

where
∂qc

∂s0
= N

2N

(∫ π

−π

(cosφ + is0(ξ) sinφ)N−1 dφ

2π

)

= N

2N

(
2M

M

)
(1 − s2

0)
M (21)

Integration is routine, and so

pc(ξ) = p0(ξ)

(
N

(
2M

M

)/
22M

)
(1 − s0(ξ)2)M (22)

which for large M reduces to

pc(ξ) = p0(ξ)

(
2N

π

) 1
2

e− N
2 s0(ξ)2

(23)

The dramatic narrowing of p0 as we depart from the center of the distribution p0—signaled
by the vanishing of s0(ξ)—is hardly a surprise, since x0 approximates the mean particle
position, and the central limit theorem then takes over.

With this introduction, we proceed next to the central particle space-time autocorrelation
pc(x, t;y,0). We must now impose the time 0 and t conditions

∑
j

sgn(xi(0) − xj (0)) = 0 =
∑

j

sgn(xi(t) − xj (t)) (24)

Following the above pattern, we have at once

p̂c(x, t;y,0) =
∑
i,j

δ(x − x1(t))δ(y − xj (0))

×
∫ ∫ π

−π

exp
∑

k

[iφ sgn(x − xk(t)) + iφ′ sgn(y − xk(0))]

× dφ

2π

dφ′

2π
(25)

which we rewrite, as we did (18),

p̂c(x, t;y,0) = −∂2

∂x∂y

∫ ∫
exp

∑
k

[iφ sgn(x − xk(t)) + iφ′ sgn(y − xk(0)]

× dφ

2π

dφ′

2π
/4 sinφ sinφ′ (26)
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To carry out the expectation of (26), we first add to the definition (13):

C0(x, t;y,0) ≡ 〈sgn(x − xc(t)) sgn(y − xc(0)〉0 (27)

and then reduce the exponentials in (26) by the identity exp(iφ sgn) = cosφ + i sinφ sgn
that was also used in (21):

〈exp[iφ sgn(x − x(t)) + iφ′ sgn(y − x(0)]〉0

= 1

2
[(1 + C0) cos	 + (s0 + s̄0)i sin	

+ (1 − C0) cos	 ′ + (s0 − s̄0)i sin	 ′]
where s0 ≡ s0(x, t), s̄0 ≡ s0(y,0), 	 ≡ φ + φ′, 	 ′ ≡ φ − φ′ (28)

Furthermore, −4 sinφ sinφ′ = 2(cos	 − cos	 ′), and we can write

pc(x, t;y,0) = −∂2

∂x∂y

1

2
Qc(s0, s̄0, c0) (29)

where, dropping the 0 subscripts, (the denominator now cancels)

δQc

δC
= N

2N+1
〈[(1 + C) cos	 + (s + s̄)i sin	 + (1 − C) cos	 ′ + (s − s̄)i sin	 ′]2M〉 (30)

〈 〉 denoting average over 	 and 	 ′, identical with that over φ and φ′. The evaluation of (30)
is direct. We have

δQc

δC
=

∑(
2M

k

)
N

2N+1
〈[(1 + C) cos	 + (s + s̄)i sin	]k〉

× 〈[(1 − C) cos	 + (s − s̄)i sin	 ′]2M−k〉

= N

22N

∑(
2M

2K

)
(1 + C + s + s̄)k(1 + C − s − s̄)k

(
2K

K

)

× (1 − C + s − s̄)M−K(1 − C − s + s̄)M−K

(
2(M − K)

M − K

)
(31)

But (see Ref. [15] p. 38), we know that

∑(
M

K

)2

AKBM−K = (A − B)MPM

(
A + B

A − B

)
, (32)

and so, conclude that

δQc

δC
= N

22N

(
2M

M

)
(A − B)MPM

(
A + B

A − B

)

where A = (1 + C)2 − (s + s̄)2, B = (1 − C)2 − (s − s̄)2 (33)
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We also know that in the special case in which the (x, t) and (y,0) distributions are
independent, we will have C0(x, t;y,0) = s0(x, t)s0(y,0) = ss̄, as well as Qc(x, t;y,0) =
qc(x, t)qc(y,0) = qc(s)qc(s̄). Thus, to (33) we can add the initial condition

Qc(s, s̄,C)c=ss̄ = qc(s)qc(s̄) (34)

This suffices in principle to determine Qc, and consequently the desired pc .

4 Limiting Cases

Equations (29), (33), (34) do constitute an exact solution, but they are hardly transparent.
A form in which no further integrations have to be performed is also available by computing
δQc

δy
directly, and so canceling the unwieldly denominator. It is also rather involved. And

a formally exact solution for the case in which the isolated particle dynamics is diffusive,
with no external field, is available as well [16], but is exceedingly complicated.

Under these circumstances, limiting cases give us more of a feeling as to the basic char-
acter of the process. We will now review, quote, and analyze one that has been considered in
detail [17]. It is that in which N → ∞ under an external potential that confines the system
longitudinally, say to distance L, but then L → ∞ as well at the same rate. To further sim-
plify matters, we focus not on a specified initial particle, but rather on any particle initially
at y and then at x at time t , and average over the number of particles. This must dilute any
conclusions, but not as much as it might seem to start with, because the probability of a par-
ticle being at y at t = 0 is weighted heavily by a small set of nearby particles, all of which
are far from the boundary if y is.

That said, we only have to make sure that we are following the same particle from y to
x, meaning that the index (with integer values in the range [−M,M])

I (x, t) = 1

2

N∑
j=1

sgn(x − xj (t)) (35)

remains the same. Hence, we now include the weight

δkn(I (x, t) − I (y,0)) (36)

in any system expectation over all system trajectories. In particular, the self-density auto
correlation ns = Nps (c = central has become s = self) is

ns(x, t;y,0) =
∫ ∑

(i)

〈
δ(x − xi(t))δ(y − x; (0))

× IIke
iφ 1

2 (sgn(x−xk(t))−sgn(y−xk(0))) dφ

2π

〉
, (37)

which yields by the technique of (25). The N th power included becomes, in this limit, an
exponential, and we readily obtain

Qs(x, t;y,0) = 1

N

∫
{exp[Q0(x, t;y,0)(cosφ − 1)]

× cos(W0(x, t;y,0) − 1}dφ

4π
(cosφ − 1), (38)
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where

Q0(x, t;y,0) = 1

2
〈1 − sgn(x − x(t))(y − x(0))〉0

= 1

2
(1 − C0(x, t;y,0))

W0(x, t;y,0) = 1

2
〈sgn(x − x(t)) − sgn(y − x(0))〉0

= 1

2
(s0(x, t) − s0(y,0))

(39)

in the notation of (13) and (27).
Qualitative information then resides in the properties of Q0 and W0, and for clarity we

here restrict ourselves to steady state. W0(x, y) = W0(x, t;y,0) does not depend on time,
and is just the single particle (signed) total density between x and y. On the other hand,
Q0(x, t;y,0) is still time-dependent. But, at long enough time, where x(t)− x(0) is diverg-
ing at the single particle rate, we will be interested (see (21)) in much smaller differences
between x and y. If we choose y = 0, then necessarily x ∼ 0, and so Q0(x, t;y,0) is re-
placed by

Q0(t) = 1

2
〈1 − sgnx(t)x(0)〉0 (40)

Q0 being a function only of time, W0 only of x and y simplifies matters substantially, and it
is easy to show by direct evaluation that, introducing the current density j , which satisfies

∂j0

∂x
+ ∂n0

∂t
= 0, (41)

then the dimensionless (self) density and current density

g(x, t;y,0) = n(x, t;y,0)

n0(x)n0(y)

k(x, t;y,0) = j (x, t;y,0)

Q(t)n0(y)

(42)

obey

∂g

∂Q
+ ∂k

∂F
= 0,

∂k

∂Q
+ ∂g

∂F
+ 2k = 0 (43)

where Q = Q0(t), F = 1
2 s0(x), independently of dynamics and external fields. In fact, it is

clear that both g and k obey

∂2g

∂Q2
+ 2

∂g

∂Q
= ∂2g

∂F 2
, (44)

the classical telegrapher’s equation, wavelike at small “time” Q, diffusive at large Q.
The “stretched time” Q is also readily shown to satisfy

〈�F(x(t))2〉 = Q + 1

2
(1 − e−2Q) → Q at large Q, (45)

as in bare particle inertial dynamics, which is then the prototype for all. For a uniform
system, where �F = n�x, (50) also tells us that Q(t) can be identified as the collision
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number Q(t) of (5). But what is Q in other dynamical cases, and can we explicitly validate
the independence of x and y? This must be done separately for each dynamics. An artificial
dynamics illustrates what is involved. It is deterministic, with no external field, but with a
Hamiltonian

H = c|p| (46)

So that v = c sgnp, ṗ = 0. Hence v = ±c, the equilibrium state is uniform of density n0,
and

n0(x, t;y,0) =
∫

1

2
n0δ(x − y − vt) dv

= n0

2
(δ(x − y − ct) + δ(x − y + ct)), (47)

from which

Q0(x, t;y,0) = n0 Max(|x − y|, ct) (48)

For small t , this is just n0|x − y|, but in the region of interest |x − y| ∝ t
1
2 so that Q0 =

n0ct is independent of x and y. Further analyses [17] show that both in inertial dynamics and
diffusion, this conclusion continues to hold. Note that if we specialize to uniform systems,
then it is easily verified quite generally that from (40),

Q(t) = n0〈|x(t) − x(0)|〉0, (49)

and so (7) is validated.

5 Brief Extension to Quasi 1-D

Let us again specialize to uniform systems. Suppose however instead of point cores, our
particles have hard cores of diameter a. Insofar as the tagged particle is concerned, the only
change is that the mean spacing between adjacent contacting faces has fallen from l to l −a,
but collision occurs at precisely the same rate. Thus, (7) is modified to

〈�x(t)2〉 = (l − a)〈|�x(t)|〉0. (50)

Recalling that in thermal equilibrium for a hard rod system at reciprocal temperature β , the
1-D equation of state is given by βP = n

(1−na)
= 1

(l−a)
[no matter what dimension, P is the

mean force per unit boundary cross-section required], so that (50) can also be written

〈�x(t)2〉 = 1

βP
〈|�x(t)|〉0, (51)

which one is tempted to generalize to any single-file fluid, with longitudinal coordinate x

in a longitudinally invariant container. Although this is a very weak argument, it agrees
reasonably well with a number of numerical simulations of single-file fluids. But (51) is
hardly unique: we could equally well make the replacement 1

(l−a)
→ (− ∂βP

∂l
)

1
2 which is also

valid for hard rods. We should do better.
A general technique might go like this. We would really like to know the distribution

of �x(t), and if we could ignore correlations between successive collisions, this would be
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related to the distribution f (ξ) of the next neighbor longitudinal separation ξ . The strategy
would then be to select K characteristics of f (ξ), determine these parameters for a solvable
model system with K parameters to match these, and use the asymptotic relation between
〈�x(t)2〉 and 〈|�x(t)|〉0 of the model system to mimic the system under study. Prototypi-
cally, the solvable hard rod reference system has known 〈ξ 〉ref = l, 〈ξ 2〉ref −〈ξ 〉2

ref = (l−a)2,
which can be determined instead for the system of interest, and the two mapped into each
other,

l = 〈ξ 〉, (l − a)2 = σ 2(ξ). (52)

The solvable Toda model [18] has 3 parameters and could be used similarly in the approxi-
mation in which particle passing can be neglected. Of course, finding even σ 2(ξ) analytically
for a given fluid is not trivial, and we might instead use the (uniform cross-section profile)
approximation l − a = ( −∂l

∂βP
)

1
2 . If this is done, we would then have the prediction

〈�x(t)2〉 =
( −∂l

∂βP

) 1
2 〈|�x(t)2|〉0 (53)

with P determined to produce the desired l. And even this improves the empirical (51).
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